Supporting Information

The ring-opening reaction of methylenecyclopropanes promoted by metal halides

Min Shi* and Bo Xu

State Key Laboratory of Organometallic Chemistry,

Shanghai Institute of Organic Chemistry, Chinese Academy of Science,

354 Fenglin Lu, Shanghai 200032, China.

Mshi@pub.sioc.ac.cn

Experimental Procedures.

General Methods. Melting points are uncorrected. ¹H and ¹³C NMR spectra were recorded at 300 and 75 MHz, respectively. Mass spectra were recorded by EI methods, and HRMS was measured on a Finnigan MA+ mass spectrometer. Organic solvents used were dried by standard methods when necessary. Commercially obtained reagents were used without further purification. All reactions were monitored by TLC with Huanghai GF254 silica gel coated plates. Flash column chromatography was carried out using 300-400 mesh silica gel at increased pressure. The starting materials 1 were prepared according to the literature. ¹

Ref. 1. Utimoto, K.; Tamura, M.; Sisido, K. Tertrahedron 1973, 29, 1169.

1. General Procedure for the reactions of MCPs with metal chlorides or bromides.

Under argon atmosphere, MCPs 1 (0.5 mmol) was dissolved in 1.5 mL of anhydrous dichloromethane (DCM) and then metal chlorides or bromides (1.0 M solution in DCM) 0.75 mL (0.75 mmol) was added. The reaction mixture was stirred for $2\sim24$ h at room temperature and the reaction was quenched with water. The organic layer was dried over Na₂SO₄. The solvent was removed under reduced pressure and residue was purified by a silica gel column (hexane/ethyl acetate as an eluent) to afford the product 2 or 3.

2. General Procedure for the reactions of MCPs 1 with BF_3 : Et_2O/n - $Bu_4N^+I^-$ system.

Under argon atmosphere, MCPs 1 (0.5 mmol) and n-Bu₄N⁺ Γ (0.75 mmol) was dissolved in 1.5 mL of DCM and then BF₃ Et₂O was added. The reaction mixture was stirred for 24 h at room temperature and the reaction was quenched with water. The organic layer was dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by a silica gel column (hexane/ethyl acetate as an eluent) to afford product 4.

4,4-Diphenyl-1-chloro-but-3-ene (**2a**): **2a** was obtained as a colorless oil, yield 82%. IR (neat): v 3079, 3024, 2956, 1598, 1494, 1444, 1296, 1029 cm⁻¹; ¹H NMR (300 MHz, TMS, CDCl₃): δ 2.56 (td, J = 7.2, 7.2 Hz, 2H), 3.55 (t, J = 7.2 Hz, 2H), 6.12 (t, J = 7.2 Hz, 1H), 7.23-7.47 (m, 10H, Ar); ¹³C NMR (75 MHz, TMS, CDCl₃): δ 32.96, 44.42, 124.83, 127.30, 127.33, 127.35, 128.21, 128.39, 129.77, 139.65, 142.15, 144.44; MS (EI) m/z: 242 (M⁺), 193, 180, 165, 115, 104, 91; HRMS (EI) Calcd. for C₁₆H₁₅Cl: 242.0862, found: 242.0829.

4-Phenyl-4-(4-chloro-phenyl)-1-chloro-but-3-ene (**2b**): **2b** was obtained as a colorless oil (E/Z-mixture, E/Z = 1:1), yield 77%. IR (neat): v 3055, 2950, 1598, 1489, 1444, 1092 cm⁻¹; E-**2b**: ¹H NMR (300 MHz, TMS, CDCl₃): δ 2.59 (td, J = 7.2, 7.2 Hz, 2H), 3.57 (t, J = 7.2 Hz, 2H), 6.09 (t, J = 7.2 Hz, 1H), 6.95-7.40 (m, 9H, Ar); Z-**2b**: ¹H NMR (300 MHz, TMS, CDCl₃): δ 2.55 (td, J = 7.2, 7.2 Hz, 2H), 3.55 (t, J = 7.2 Hz, 2H), 6.07 (t, J = 7.2 Hz, 1H), 6.95-7.40 (m, 9H, Ar); MS (EI) m/z: 276 (M⁺), 227, 205, 192, 165, 149, 115; HRMS (EI) Calcd. for C₁₆H₁₄Cl₂: 276.0473, found: 276.0493.

4,4-Bis-(4-chloro-phenyl)-1-chloro-but-3-ene (**2c**): **2c** was obtained as a colorless oil, yield 84%. IR (neat): ν 3030, 2956, 2925, 1592, 1492, 1401, 1091 cm⁻¹; ¹H NMR (300 MHz, TMS, CDCl₃): δ 2.57 (td, J = 6.6, 6.6 Hz, 2H), 3.58 (t, J = 6.6 Hz, 2H), 6.11 (t, J = 6.6 Hz, 1H), 7.09-7.38 (m, 8H, Ar); ¹³C NMR (75 MHz, CDCl₃): δ 33.03, 44.36, 126.20, 128.64, 128.77, 128.99, 131.31, 133.63, 133.71, 137.77, 140.41, 142.49; MS (EI) m/z: 310 (M⁺), 275, 261, 226, 191, 163; HRMS (EI) Calcd. for C₁₆H₁₃Cl₃: 310.0083, found: 310.0047.

4,4-Bis-(4-methoxy-phenyl)-1-chloro-but-3-ene (**2d**): **2d** was obtained as a colorless oil, yield 93%. IR (neat): v 3000, 2956, 1605, 1510, 1287, 1031 cm⁻¹; ¹H NMR (300 MHz, TMS, CDCl₃): δ 2.55 (td, J = 7.2, 7.2 Hz, 2H), 3.53 (t, J = 7.2 Hz, 2H), 3.75 (s, 3H, OCH₃), 3.80 (s, 3H, OCH₃), 5.94 (t, J = 7.2 Hz, 1H), 6.77-7.16 (m, 8H, Ar); ¹³C NMR (75 MHz, TMS, CDCl₃): δ 33.24, 44.80, 55.50, 55.71, 113.74, 113.94, 123.02, 128.73, 131.12, 132.35, 132.52, 1325.46, 143.69, 158.96, 159.24; MS (EI) m/z: 302 (M⁺), 267, 253, 242, 211, 145, 135; HRMS (EI) Calcd. for C₁₈H₁₉ClO₂: 302.1074, found: 302.1118.

1-Chloro-pentadec-3-ene (**2e**): **2e** was obtained as a colorless oil (E/Z mixture, E/Z = 3.4:1), yield 35%. IR (neat): v 2924, 2853, 1465, 1377, 968 cm⁻¹; E-**2e**: ¹H NMR (300 MHz, TMS, CDCl₃): δ 0.87 (t, J = 6.3 Hz, 3H, CH₃), 1.28-1.41 (m, 18H), 1.96-2.00 (m, 2H), 2.40-2.47 (m, 2H), 3.49 (dd, J = 7.2, 7.2 Hz, 2H), 5.38-5.42 (m, 1H), 5.49-5.52 (m, 1H); Z-**2e**: ¹H NMR (300 MHz, TMS, CDCl₃): δ 0.87 (t, J = 6.3 Hz, 3H, CH₃), 1.28-1.41 (m, 18H), 1.96-2.00 (m, 2H), 2.47-2.51 (m, 2H), 3.49 (t, J = 7.2 Hz, 2H), 5.74-5.82 (m, 1H), 5.82-5.89 (m, 1H); MS (EI) m/z: 244 (M⁺), 209, 159, 145; HRMS (EI) Calcd. for C₁₆H₂₉Cl: 244.1958, found: 244.1968.

1-Chloro-4-methyl-undec-3-ene (**2f**): **2f** was obtained as a colorless oil (E/Z mixture, E/Z = 3.4:1), yield 75%. IR (neat): v 2956, 2926, 1457, 1377, 1292, 721 cm⁻¹; E-**2f**: ¹H NMR (300 MHz, TMS, CDCl₃): δ 0.87 (t, J = 7.2 Hz, 3H, CH₃), 1.26-1.40 (m, 10H), 1.61 (s, 3H), 1.96-2.10 (m, 2H), 2.42-2.49 (m, 2H), 3.47 (t, J = 7.8 Hz, 2H), 5.11 (tt, J = 7.2, 1.2 Hz, 1H); Z-**2f**: ¹H NMR (300 MHz, TMS, CDCl₃): δ 0.87 (t, J = 7.2 Hz, 3H, CH₃), 1.26-1.40 (m, 10H), 1.71 (s, 3H), 1.90-1.96 (m, 2H), 2.05-2.20 (m, 2H), 3.57 (t, J = 7.8 Hz, 2H), 5.14 (tq, J = 7.2, 1.2 Hz); MS (EI) m/z: 202 (M⁺), 202, 167, 125, 118, 95; HRMS (EI) Calcd. for C₁₂H₂₃Cl: 202.1488, found: 202.1462.

4,4-Diphenyl-1-bromo-but-3-ene (**3a**): **3a** was obtained as a colorless oil, yield 80%. IR (neat): ν 3056, 3024, 1660, 1598, 1494, 1444, 1269 cm⁻¹; ¹H NMR (300 MHz, TMS, CDCl₃): δ 2.66 (td, J = 7.2, 7.2 Hz, 2H), 3.41 (t, J = 7.2 Hz, 2H), 6.08 (t, J = 7.2 Hz, 1H), 7.15-7.37 (m, 10H, Ar); ¹³C NMR (75 MHz, TMS, CDCl₃): δ 32.65,

32.84, 125.62, 125.65, 127.23, 127.26, 128.10, 128.27, 129.64, 139.52, 142.02, 144.19; MS (EI) m/z: 286 (M^+), 207, 193, 189, 182, 178; HRMS (EI) Calcd. for $C_{16}H_{15}Br$: 286.0357, found: 285.9449.

4-Phenyl-4-(4-chloro-phenyl)-1-bromo-but-3-ene (**3b**): **3b** was obtained as a colorless oil (E/Z-mixture, E/Z = 1:1), yield 89%. IR (neat): v 3056, 2962, 1661, 1597, 1489, 1091, 1014 cm⁻¹. E-**3b**: ¹H NMR (300 MHz, TMS, CDCl₃): δ 2.65 (td, J = 7.2, 7.2 Hz, 2H), 3.40 (t, J = 6.8 Hz, 2H), 6.05 (t, J = 7.2 Hz, 1H), 7.10-7.38 (m, 9H, Ar); Z-**3b**: ¹H NMR (300 MHz, TMS, CDCl₃): δ 2.63 (td, J = 7.2, 7.2 Hz, 2H), 3.38 (t, J = 6.8 Hz, 2H), 6.03 (t, J = 7.2 Hz, 1H), 7.10-7.38 (m, 9H, Ar); MS (EI) m/z: 320 (M⁺), 241, 227, 192, 178, 163, 149, 129; HRMS (EI) Calcd. for C₁₆H₁₄Br₂: 319.9967, found: 319.9984.

4,4-Bis-(4-chloro-phenyl)-1-bromo-but-3-ene (**3c**): **3c** was obtained as a colorless oil, yield 84%. IR (neat): v 3030, 2963, 1661, 1590, 1491, 1268, 1091 cm⁻¹; ¹H NMR (300 MHz, TMS, CDCl₃): δ 2.65 (td, J = 7.2, 7.2 Hz, 2H), 3.42 (t, J = 6.6 Hz, 2H), 6.06 (t, J = 7.2 Hz, 1H), 7.08-7.37 (m, 8H, Ar); ¹³C NMR (75 MHz, TMS, CDCl₃): δ 40.42, 41.67, 126.37, 128.26, 128.31, 128.46, 130.96, 131.26, 133.37, 137.39, 140.04, 141.97; MS (EI) m/z: 354 (M⁺), 261, 250, 235, 226, 202, 191, 163; HRMS (EI) Calcd. for C₁₆H₁₃BrCl₂: 353.9578, found: 353.9569.

1-Bromo-4-methyl-undec-3-ene (**3f**): **3f** was obtained as a colorless oil (E/Z mixture, E/Z = 1.7:1), yield 45%. IR (neat): v 2957, 2855, 1456, 1378, 1268, 723 cm⁻¹; E-**3f**: ¹H NMR (300 MHz, TMS, CDCl₃): δ 0.86 (t, J = 7.2 Hz, 3H, CH₃), 1.26-1.40 (m, 10H), 1.61 (s, 3H), 1.90-2.05 (m, 2H), 2.10-2.20 (m, 2H), 3.38 (t, J = 7.8 Hz, 2H), 5.18 (tt, J = 7.2, 1.0 Hz, 1H); Z-**3f**: ¹H NMR (300 MHz, TMS, CDCl₃): δ 0.87 (t, J = 7.2 Hz, 3H, CH₃), 1.26-1.40 (m, 10H), 1.71 (s, 3H), 1.90-1.96 (m, 2H), 2.55-2.60 (m, 2H), 3.34 (t, J = 7.8 Hz, 2H), 5.12 (tq, J = 7.2, 1.0 Hz). MS (EI) m/z: 246 (M⁺), 191, 177, 162, 125, 95, 83, 55; HRMS (EI) Calcd. for C₁₂H₂₃Br: 246.0983, found: 246.0960.

4,4-Diphenyl-1,3-diiodo-but-3-ene (4): 4 was obtained as a colorless oil. IR (neat): ν

3045, 2877, 1954, 1597, 1490, 1245 cm⁻¹; ¹H NMR (300 MHz, TMS, CDCl₃): δ 3.06 (t, J = 6.9 Hz, 2H), 3.37 (t, J = 6.9 Hz, 2H), 7.18-7.32 (m, 10H, Ar); ¹³C NMR (75 MHz, TMS, CDCl₃): δ 6.24, 44.21, 106.58, 127.46, 127.48, 128.16, 128.17, 128.45, 128.46, 128.51, 139.88, 146.27, 150.57; MS (EI) m/z: 460 (M⁺), 333, 254, 206, 178; HRMS (EI) Calcd. for C₁₆H₁₄I₂: 459.9185, found: 459.9189.

4,4-Diphenyl-1-iodo-but-3-ene (**5a**): **5a** was obtained as a colorless oil. yield 95%. IR (neat): v 3055, 3022, 1598, 1494, 1443, 1239, 759 cm⁻¹; ¹H NMR (300 MHz, TMS, CDCl₃): δ 2.67 (td, J = 7.2, 7.2 Hz, 2H), 3.16 (t, J = 7.2 Hz, 2H), 6.01 (t, J = 7.2 Hz, 1H), 7.15-7.36 (m, 10H, Ar); ¹³C NMR (75 MHz, TMS, CDCl₃): δ 5.62, 33.29, 127.22, 127.24, 127.64, 128.11, 129.26, 129.63, 139.54, 142.05, 143.72; MS (EI) m/z: 334 (M⁺), 207, 191, 178, 129; HRMS (EI) Calcd. for C₁₆H₁₅I: 334.0218, found: 334.0194.

4-Phenyl-4-(4-chloro-phenyl)-1-iodo-but-3-ene (**5b**): **5b** was obtained as a colorless oil (E/Z-mixture, E/Z = 1:1), yield 100%. IR (neat): v 3024, 2924, 1489, 1091, 702 cm⁻¹; E-**5b**: ¹H NMR (300 MHz, TMS, CDCl₃): δ 2.65 (td, J = 7.2, 7.2 Hz, 2H), 3.19 (t, J = 7.2 Hz, 2H), 6.01 (t, J = 7.2 Hz, 1H), 7.09-7.35 (m, 9H, Ar); Z-**5b**: ¹H NMR (300 MHz, TMS, CDCl₃): δ 2.63 (td, J = 7.2, 7.2 Hz, 2H), 3.16 (t, J = 7.2 Hz, 2H), 6.02 (t, J = 7.2 Hz, 1H), 7.09-7.35 (m, 9H, Ar); MS (EI) m/z: 368 (M⁺), 256, 241, 216, 163; HRMS (EI) Calcd. for C₁₆H₁₄CII: 367.9829, found: 367.9809.

4,4-Bis-(4-chloro-phenyl)-1-iodo-but-3-ene (**5c**): **5c** was obtained as a colorless oil, yield 98%. IR (neat): ν 3030, 2957, 1591, 1491, 1400, 1091 cm⁻¹; ¹H NMR (300 MHz, TMS, CDCl₃): δ 2.65 (td, J = 7.2, 7.2 Hz, 2H), 3.17 (t, J = 7.2 Hz, 2H), 5.99 (t, J = 7.2 Hz, 1H), 7.07-7.36 (m, 8H, Ar); ¹³C NMR (75 MHz, TMS, CDCl₃): δ 5.20, 33.08, 128.35, 128.49, 128.57, 128.66, 128.75, 130.97, 133.31, 137.46, 140.12, 141.57; MS (EI) m/z: 402 (M⁺), 275, 250, 204, 163; HRMS (EI) Calcd. for C₁₆H₁₃Cl₂I: 401.9439, found: 401.9482.

4,4-Bis-(4-methoxy-phenyl)-1-iodo-but-3-ene (**5d**): **5d** was obtained as a colorless oil, yield 53%. IR (neat): v 2954, 2834, 1606, 1511, 1246, 833 cm⁻¹; ¹H NMR (300 MHz,

TMS, CDCl₃): δ 2.67 (td, J = 7.2, 7.2 Hz, 2H), 3.18 (t, J = 7.2 Hz, 2H), 3.79 (s, 3H, OCH₃), 3.84 (s, 3H, OCH₃), 5.88 (t, J = 7.2 Hz, 1H), 6.79-7.18 (m, 8H, Ar); ¹³C NMR (75 MHz, TMS, CDCl₃): δ 5.86, 33.33, 55.08, 55.12, 113.31, 113.46, 113.67, 125.58, 128.33, 128.38, 128.66, 130.68, 131.94, 135.05, 142.66, 158.52, 158.79; HRMS (EI) Calcd. for C₁₈H₁₉IO₂: 394.0430, found: 394.0446.

By-product in the reaction of MCP **1d** with BF₃ OEt₂/Bu₄N⁺Γ was obtained as a colorless oil (E/Z mixture, E/Z=1/1), yield 36%. IR (neat): v 3385, 2955, 2834, 1607, 1510, 1245, 834 cm⁻¹; E-isomer: ¹H NMR (300 MHz, TMS, CDCl₃): δ 2.66 (td, J=7.2, 7.2 Hz, 2H), 3.17 (t, J=7.2 Hz, 2H), 3.79 (s, 3H, OCH₃), 5.35 (brs, 1H, OH), 5.86 (t, J=7.2 Hz, 1H), 6.79-7.18 (m, 8H, Ar); Z-isomer: ¹H NMR (300 MHz, TMS, CDCl₃): δ 2.66 (td, J=7.2, 7.2 Hz, 2H), 3.17 (t, J=7.2 Hz, 2H), 3.84 (s, 3H, OCH₃), 5.39 (br.s., 1H, OH), 5.87 (t, J=7.2 Hz, 1H), 6.79-7.18 (m, 8H, Ar); MS (EI) m/z: 380 (M⁺), 253, 213, 181, 159, 84; HRMS (EI) Calcd. for C₁₇H₁₇IO₂: 380.0273, found: 380.0254.